Abstract
We explore the problem of charged perfect fluid spherically symmetric gravitational collapse in f(R, T) gravity (R is Ricci scalar and T is the trace of energy–momentum tensor). We have taken the interior boundary of a star as spherically symmetric metric filled with the charged perfect fluid. In order to study charged perfect fluid collapse, we have investigated the exact solutions of the Maxwell–Einstein field equations solutions using the most simplified form for f(R, T) model f(R, T) = R + 2[Formula: see text]T, where [Formula: see text] is model parameter. This study involves the effects of charge as well as coupling parameter on collapse of a star. We studied the nature of trapped surfaces, apparent horizon and singularity structure in detail. It has been found that singularity is formed earlier than the apparent horizons, so the end state of gravitational collapse in this case is black hole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Modern Physics Letters A
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.