Abstract

A multiterm solution of the Boltzmann equation has been developed and used to calculate transport coefficients of charged-particle swarms in gases under the influence of electric and magnetic fields crossed at arbitrary angles psi. The hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equation in the hydrodynamic regime [Ness, Phys. Rev. A 47, 327 (1993)] is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a weighted sum of Maxwellian distributions at different temperatures. Results are given for charged-particle swarms in certain model gases over a range of psi and field strengths. The variation of the transport coefficients with psi is addressed using physical arguments. The errors associated with the two-term approximation and inadequacies of Legendre polynomial expansions are highlighted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.