Abstract

Abstract In this paper we investigate charged particle transport and acceleration in a two-dimensional system with an uniform electric field and stationary magnetic field fluctuations. The main idea of this study is to consider dependencies of transport and acceleration rates on properties of distributions of magnetic field fluctuations. We develop a simplified model of magnetic fluctuations with a regulated distribution and apply the test particle approach. System parameters are chosen to simulate conditions typical for ion dynamics in the deep Earth magnetotail. We show that for a fixed power density of magnetic field fluctuations the particle acceleration is more effective in the system where particles interact with small-amplitude (but frequent) fluctuations. In systems with large-amplitude rare fluctuations the particle scattering is less effective and the particle acceleration is weaker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.