Abstract

A simulation of a magnetic spectrometer system and the study of its instrumental response are presented here. An analytic, three-dimensional expression for the inhomogeneous and fringing magnetic field of the system is obtained. A three-dimensional, time-reversed trajectory calculation of electrons and protons inside the system is performed. A clean electron-ion separation and electron analysis are achieved. The geometric factors of the electron and proton detectos for different energies and the particles' angular distributions are determined. It is found that the geometric factors of two electron detectors E and F have an appreciable variation for different energies with a maximum at 70 and 500 keV, respectively, whereas the proton detector has monotonic increasing geometric factors as the energy increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.