Abstract
The results from theoretical and experimental studies, as well as from 2.5-dimensional (2.5-D) numerical simulation of plasma wake field excitation, by either relativistic electron bunch, laser pulse, and the charged particle wake field acceleration are discussed. The results of these investigations make it possible to evaluate the potentialities of the wake field acceleration method and to analyze whether it can serve as a basis for creating a new generation of devices capable of charged particle accelerating at substantially higher (on the order of two to three magnitudes) rates in comparison with those achievable in classical linear high-frequency (resonant) accelerators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.