Abstract

Phase separation in lipid membranes controls the organization of membrane components and thus regulates membrane-mediated processes. Membrane phase behavior is influenced by the molecular properties of its components and their relative concentrations. Charged lipid species are among the most essential components of lipid membranes, and their impact on the membrane phase behavior is yet to be fully understood. Aiming to provide insight into this impact, this paper investigates how the presence and amount of anionic and cationic lipids affect the phase behavior of multicomponent membranes. Membranes of ternary composition DOPC:DPPC:Chol with two distinct molar ratios were used to test the hypothesis that inclusion of charged lipids with saturated tails, beyond a certain concentration, would impede phase separation in an otherwise phase-separating membrane. Fluorescence microscopy examination of electroformed giant liposomes revealed that when more than half of DOPC in the examined mixtures was replaced with DOPA or DOTAP, phase separation in liposomes was somewhat suppressed, and this effect increased with increasing charged lipid content. This effect depended on the membrane surface charge density as the half-maximal effect was observed at around 0.0072 C Å-2 in all examined cases. The phase-separation suppressing effect of DOPA was neutralized when oppositely charged lipid DOTAP was included in the mixture. Likewise, presence of divalent cation Ca2+ in the solution neutralized the impact of negatively charged DOPA. These results underline the detrimental influence of surface charge density on membrane phase behavior. More importantly, these findings suggest that the charged lipid content in membranes may be a regulator of their phase behavior and open new opportunities for the design of synthetic lipid membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call