Abstract

Jets are collimated sprays of particles resulting from fragmentation of hard scattered partons. They are measured in different types of collisions at different energies to test perturbative Quantum Chromodynamic calculations and are used to study the hard scattering, fragmentation and hadronisation of partons. These phenomena, measured in simple systems such as proton‐proton collisions, serve as a baseline to investigate their modifications by hot and dense nuclear matter created in high energy heavy-ion collisions. We have analysed data from minimum bias proton‐proton collisions at centre of mass energy of 2.76 and 7 TeV collected using the ALICE detector system at the LHC and reconstructed the inclusive jet cross section from charged tracks at midrapidity. We present jet spectra reconstructed using the infrared and colinear safe anti-kT algorithm with underlying event subtraction, corrected for detector effects via unfolding for both collision energies. Furthermore, results from analyses of fragmentation distributions and jet shape observables are shown. All results are compared with measurements of other LHC experiments and with Monte Carlo generators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.