Abstract

As a new electrochemical technology, capacitive deionization (CDI) has been increasingly applied in environmental water treatment and seawater desalination. In this study, functional groups modified porous hollow carbon (HC) were synthesized as CDI electrode material for removing Na+ and Cl− in salty water. Results showed that the average diameter of HC was approximately 180 nm, and the infrared spectrum showed that its surface was successfully modified with sulfonic and amino groups, respectively. The sulfonic acid functionalized HC (HC-S) showed better electrochemical and desalting performance than the amino-functionalized HC (HCN), with a maximum Faradic capacity of 287.4 F/g and an adsorptive capacity of 112.97 mg/g for NaCl. Additionally, 92.63% capacity retention after 100 adsorption/desorption cycles demonstrates the excellent stability of HC-S. The main findings prove that HC-S is viable as an electrode material for desalination by high-performance CDI applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.