Abstract

Charged domain walls (CDWs), which possess metallic-type conductivity and can be created and controlled in the bulk of wide-band-gap ferroelectrics, attract nowadays a strong research interest. The most advanced method for production of stable CDWs involves weak super-band-gap illumination. Here, we investigate theoretically the impact of this illumination on the major wall properties including the energy and the spatial profiles of the polarization, of the electrostatic potential, and of the compensating charge carriers. The key material parameters determining the effect of light are the zero-field polarization strength, the dielectric permittivity, and the trap concentration. The main predictions are substantial reduction of the wall energies and decrease of the electric wall potential under light. These features facilitate creation of dense CDWs patterns and accessibility of the metallic-type wall conductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.