Abstract

Estrogens play critical roles in embryonic development, gonadal sex differentiation, behavior, and reproduction in vertebrates and in several human cancers. Estrogens are synthesized from testosterone and androstenedione by the endoplasmic reticulum membrane-bound P450 aromatase/cytochrome P450 oxidoreductase complex (CYP19/CPR). Here, we report the characterization of novel mammalian CYP19 isoforms encoded by CYP19 gene copies. These CYP19 isoforms are all defined by a combination of mutations in the N-terminal transmembrane helix (E42K, D43N) and in helix C of the catalytic domain (P146T, F147Y). The mutant CYP19 isoforms show increased androgen conversion due to the KN transmembrane helix. In addition, the TY substitutions in helix C result in a substrate preference for androstenedione. Our structural models suggest that CYP19 mutants may interact differently with the membrane (affecting substrate uptake) and with CPR (affecting electron transfer), providing structural clues for the catalytic differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.