Abstract

Chromosomally encoded toxin-antitoxin systems have been increasingly identified and characterized across bacterial species over the past two decades. Overproduction of the toxin gene results in cell growth stasis or death for the producing cell, but co-expression of its antitoxin can repress the toxic effects. For the subcategory of type I toxin-antitoxin systems, many of the described toxin genes encode a small, hydrophobic protein with several charged residues distributed across the sequence of the toxic protein. Though these charged residues are hypothesized to be critical for the toxic effects of the protein, they have not been studied broadly across different type I toxins. Herein, we mutated codons encoding charged residues in the type I toxin zorO, from the zor-orz toxin-antitoxin system, to determine their impacts on growth inhibition, membrane depolarization, ATP depletion, and the localization of this small protein. The non-toxic variants of ZorO accumulated both in the membrane and cytoplasm, indicating that membrane localization alone is not sufficient for its toxicity. While mutation of a charged residue could result in altered toxicity, this was dependent not only on the position of the amino acid within the protein but also on the residue to which it was converted, suggesting a complex role of charged residues in ZorO-mediated toxicity. A previous study indicated that additional copies of the zor-orz system improved growth in aminoglycosides: within, we note that this improved growth is independent of ZorO toxicity. By increasing the copy number of the zorO gene fused with a FLAG-tag, we were able to detect the protein expressed from its native promoter elements: an important step for future studies of toxin expression and function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.