Abstract

A nonvolatile memory (NVM) based on an amorphous-indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) with defect-engineered gate insulator was demonstrated. The gate insulator was a blocking alumina/storage alumina/tunneling alumina stack structure, which was simply assembled in a single atomic layer deposition step. The memory device showed a positive shift of threshold voltage as large as 14.4 V after +20 V, 1 s programming. In contrast, the memory erasing was not sensitive to negative gate voltage in the dark. Once programmed, the memory can only be light erased. Furthermore, the light combined with a negative bias improved the erasing speed effectively. In addition, a 10-year memory window as large as 7.5 V was extrapolated at room temperature with a charge loss of 34.7%. Based on the observation of blisters in the storage alumina layer after high temperature annealing, Fourier transform infrared spectroscopy measurement and first-principles calculations, the high electron storage capacity can be attributed to the deep defect levels in the storage alumina layer, which were originated from hydrogen impurity. This a-IGZO TFT charge trapping NVM with high performance and simple process is a candidate device for the application of fully functional transparent system on panel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.