Abstract
The charge transport properties of mer-tris(8-hydroxyquinolinato)aluminum(III) (mer-Alq), which is the most widely used electron transport material in OLED, were investigated by quantum chemistry calculations within the framework of the charge hopping model and Marcus electron transfer theory. Internal reorganization energies of 0.276 and 0.242 eV were calculated by the DFT-B3LYP method employing a 6-31 G* basis set for the electrons lambdai(e) and holes lambdai(h), respectively. The relative distances and orientations of Alq molecules in amorphous film were simulated by those in the beta-phase. The intermolecular charge-transfer integrals, Hda(h) and Hda(e), along all 14 hopping pathways were then calculated by the Koopmans Theorem in conjunction with the Hartree-Fock method employing a 6-31 G* basis set as well as by the direct coupling method. The results showed that there were some Hda(e) that were 1 order of magnitude larger than any Hda(h), because hopping pathways with effective overlaps of LUMOs can occur and, thus, large Hda(e). On the other hand, effective overlap of HOMO was absent in all pathways, resulting in a relatively small Hda(h). This difference in the magnitudes of Hda(e) and Hda(h) would predict a 2 orders of magnitude difference in the electron-transfer rate constants and account for the observed 2 orders of magnitude difference in the mobilities of electrons and holes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.