Abstract

Charge transport is one of the most important properties in organic electronic materials. On the basis of Marcus theory, the charge-transfer is the course of electron-electron interaction and electron-phonon interaction, and the greater the electron-phonon interaction coupling strength, the greater the reorganization energy is, which is not conducive to the charge transport. The greater the electron-electron interaction coupling strength, the greater the charge transfer matrix element is, which is beneficial to the charge transport. Charge transport properties of triphenylene derivative discogens molecules with a 1, 2, 3-triazole, 1, 2, 4-triazole or 1, 2, 3-trinitrogen-2, 3- cyclopenten side chain are investigated computationally. The results show that the electronic mobility and the hole mobility of 1, 2, 3-triazole triphenylene derivative are nearly equal, and the rate constant is 21012s-1. The hole transfer rate constant of the 1, 2, 4-triazole triphenylene derivative molecules is 51012s-1, which is ten times higer than the electronic transfer rate constant. Triphenylene containing 4, 5-dihydro-1, 2, 3-triazole has better electronic mobility but smaller hole mobility than triphenylene discogens containing 1, 2, 3-triazole or 1, 2, 4-triazole, and the electronic mobility is 31012s-1, which is equal to ten times of the hole mobility. The hole transfer or electron transfer rate of the target molecules is affected mainly by the transfer matrix element, in other words, electron-electron interaction coupling strength determines the magnitude of mobility rate variation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.