Abstract

The molecular geometries, electronic structures, reorganization energies, and charge transfer integrals of three anthracene derivatives {2,6-bis[2-(4-pentylphenyl)vinyl]anthracene, DPPVAnt; 2,6-bis-thiophene anthracene, DTAnt; 2,6-bis[2-hexylthiophene]anthracene, DHTAnt} were investigated by density functional theory at the B3LYP/ 6-31G(d) level. Their mobilities at room temperature were estimated using Einstein relations and compared with the calculated mobility of anthracene. DPPVAnt is a good hole-transporting material with a hole mobility as high as 0.49 cm2·V-1·s-1; DHTAnt is an electron-transporting material with an electron mobility of about 0.12 cm2·V-1·s-1; DTAnt is a bipolar material with its hole and electron mobilities being 0.069 and 0.060 cm2·V-1·s-1, respectively. The calculated mobilities were of the same magnitude as those obtained by experimental measurements. The reorganization energies for the electrons of the three derivatives are almost the same as that for anthracene but the reorganization energies for the holes of the three derivatives are larger than that of anthracene and they follow the order: anthracene DPPVAntDTAntDHTAnt. This is not in agreement with the order of the calculated mobilities and implies that the mobilities are determined by molecular packing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.