Abstract
A facile chemical mixing procedure was utilized to fabricate microcrystalline cellulose (MCC) derived from Gigantochloa scortechinii-supported ZnO photocatalysts, with different MCC content. The successful incorporation of ZnO onto the MCC surfaces was characterized by multitudinous characterization techniques. The photocatalytic evaluation studies were carried out under a very low UVC light intensity (9 W) against acetaminophen (ACE) in the aqueous solution. The MCC-supported ZnO (0.5:1) composites photocatalyst demonstrated a rapid and enhanced performance within 180 min under normal conditions, with a two-time higher value of rate constant k (1.12 ×10−2 min−1) as compared to pristine ZnO. The improved efficiency under UVC irradiation was associated with the excellent separation capability of photoexcited charge carriers, ease of electron migration, and electrons’ mediators by the MCC in the composite photocatalyst, as demonstrated by the band gap and photoluminescence analyses. The major reactive species were found to be hydroxyl radicals (•OH) and photoexcited holes (h+). The best photocatalyst has high photostability since it can be recycled up to five times towards ACE degradation without any regeneration step.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.