Abstract

The charging and discharging processes in amorphous silicon nitride (a-SiNx) by using the Metal/a-SiNx/SiO2/Si structure (MNOS) were experimentally and theoretically considered. The tunnel-thick (10 nm) SiO2 layer and metal gates with different work functions were used. This made it possible to separate the electron and hole components of the currents during the charging voltage action. The discharge times in the MNOS-structure at high temperatures (400 K) and the same “pulling” voltage coincide for electrons and holes. The charge transport is described by the multiphonon mechanism of trap ionization. In the discharging mode, the parameters of electron and hole traps in SiNx were determined and they turned out to be equal, and that indicate the amphoteric nature of traps in SiNx.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.