Abstract

We investigate the conductivity of charge carriers confined to a two-dimensional system with the non-parabolic dispersion $k^N$ with $N$ being an arbitrary natural number. A delta-shaped scattering potential is assumed as the major source of disorder. We employ the exact solution of the Lippmann-Schwinger equation to derive an analytical Boltzmann conductivity formula valid for an arbitrary scattering potential strength. The range of applicability of our analytical results is assessed by a numerical study based on the finite size Kubo formula. We find that for any $N>1$, the conductivity demonstrates a linear dependence on the carrier concentration in the limit of a strong scattering potential strength. This finding agrees with the conductivity measurements performed recently on chirally stacked multilayer graphene where the lowest two bands are non-parabolic and the adsorbed hydrocarbons might act as strong short-range scatterers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.