Abstract

Previously, the p-n-p bipolar magnetic junction transistor was demonstrated using a magnetic semiconductor InMnAs as the collector. A current gain β <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dc</sub> as high as 20 of the transistor is observed at 300 K. A negative magnetoamplification of -150% is obtained when the applied magnetic field is 8 T. In order to assess the gain mechanism for such transistors, we measured the minority carrier lifetime in a p-n InMnAs/InAs heterojunction diode. A minority carrier lifetime of 320 ns was obtained at room temperature. For the p-n-p MJT, a decrease in the emitter injection efficiency with the magnetic field is observed for the various base currents, which is attributed to the positive magnetoresistance of the p-type InMnAs. The emitter injection efficiency decreases with the magnetic field leading to the observed negative magnetic amplification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.