Abstract

We fabricated hybrid light emitting devices based on colloidal CdSe/ZnS core/shell quantum dots and a solution-processed NiO layer. The use of a sol-gel NiO layer as a hole injection layer (HIL) resulted in overall improvement in device operation compared to a control device with a more conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) HIL. In particular, luminous efficiency increased substantially because of the suppression of excessive currents and became as large as 2.45 cd/A. To manifest the origin of current reduction, temperature- and electric field-dependent variations of currents with respect to bias voltages were investigated. In a low bias voltage range below the threshold for luminance turn-on, the Poole-Frenkel (PF) emission mechanism was responsible for the current-density variation. However, the space-charge-limited current modified with PF-type mobility ruled the current-density variation in high bias voltage range above the threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.