Abstract

CsPbBr3-Pb4S3Br2 Janus nanocrystals (NCs) are the only nanomaterial where the epitaxial structure of perovskite and chalcogenide materials has been realized at the nanoscale, but their exciton dynamics mechanism has not yet been thoroughly investigated or applied in photodetection applications. This work reports an attractive device performance of perovskite photoconductors based on epitaxial CsPbBr3-Pb4S3Br2 Janus NCs, as well as the carrier relaxation and transfer mechanism of the heterojunction. By a combination of transient optical absorption and quantum dynamics simulation, it is demonstrated that the photogenerated holes on CsPbBr3 can be successfully extracted by Pb4S3Br2, while the hole transfer proceeds about three times faster than energy loss and remains "hot" for about 300 fs. This feature has favorable effects on long-range charge separation and transport; therefore, the Janus NCs photoconductors exhibit an exceptional responsivity of 34.0 A W-1 and specific detectivity of 1.26 × 1014 Jones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call