Abstract

The photocurrent output of the C6H4NH2CuBr2I/TiO2 heterojunction photoelectrode in an aqueous solution is super stable even after 30 000 s. However, the photocurrent is extremely weak. Intensity-modulated photocurrent spectroscopy revealed that the electron transfer in the C6H4NH2CuBr2I/TiO2 photoelectrode without bias is not sufficiently fast to compete with the charge recombination process due to the short diffusion length (∼23 nm), resulting in a low photocurrent. The charge separation and charge transfer efficiency in the bulk of C6H4NH2CuBr2I could be significantly improved under a small reverse electric field (Er), resulting in an enhanced photocurrent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.