Abstract

Room-temperature superparamagnetic greigite nanoplatelets were synthesized using 3-methyl catechol as growth moderator and phase-control agent, in the presence of sulfur, thiosulfate, octadecylamine, and Fe2+. Dense films of nanoplatelets showed ohmic behavior in the 10–300 K range. In as-deposited films the resistivity increased with decreasing temperature (as for semiconductors), while in hydrazine-treated films it decreased with decreasing temperature, as for metals. The electrochemical properties of as-prepared greigite nanoplatelets upon lithiation/de-lithiation have been followed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrodes containing greigite nanoplatelets were found to be active in the lithiation/delithiation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.