Abstract

Polymer blends allow control of microstructure in donor-acceptor photovoltaic devices. Here we present measurements of devices containing polyfluorene blend layers of different thicknesses, and we are able to extract characteristic transport lengths for electrons and holes. We also present analytical and numerical modeling of single-layer and bilayer photovoltaic devices, which demonstrates the importance of bound polaron pairs formed after the initial electron transfer from donor to acceptor. Field-assisted dissociation of these polaron pairs is a critical process in determining device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.