Abstract

We present a simple scattering approach to the charge transport across a realistic superconductor–normal injector interface of a finite transmittance that is modeled by a double-barrier mesoscopic junction. For a d-wave pairing symmetry, our calculations combine a fully quantum-mechanical scattering formalism with a self-consistent estimation of Andreev reflection coefficients within the quasi-classical Eilenberger equation scheme for a free specular superconducting surface. Numerical simulations confirm experimental criteria of Cucolo for the unconventional superconducting origin of conductance anomalies in high-temperature oxides. A discussion of dephasing effects caused by inelastic scattering processes in the interlayer and their impact on the conductance spectra is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.