Abstract

We have compiled and analyzed optical and structural properties of lanthanide doped non-metal oxides of the form APO 4:Ln 3+ with A a rare earth and of transition metal oxides with formula ABO 4:Ln 3+ with B a transition metal. The main objective is to understand better the interrelationships between the band gap energy, the O 2−→Ln 3+ charge transfer energy, and the Ln 3+→B 5+ inter-valence charge transfer energy. Various models exist for each of these three types of electron transitions in inorganic compounds that appear highly related to each other. When properly interpreted, these optically excited transitions provide the locations of the lanthanide electron donating and electron accepting states relative to the conduction band and the valence band of the hosting compound. These locations in turn determine the luminescent properties and charge carrier trapping properties of that host. Hence, understanding the relationship between the different types of charge transfer processes and its implication for lanthanide level location in the band gap is of technological interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.