Abstract

The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H + ion is scattered from physisorbed Ar at any coverage whereas the H + yield from solid H 2O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H 2O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.