Abstract

The field of photovoltaics is revolutionized in recent years by the development of two-dimensional (2D) type-II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)-doped WS2 is investigated, hereafter labeled V-WS2 , in combination with air-stable Bi2 O2 Se for use in high-performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2 /Bi2 O2 Se, 0.4 at.% V-WS2 /Bi2 O2 Se, and 2at.% V-WS2 /Bi2 O2 Se, respectively, indicating a superior charge transfer in V-WS2 /Bi2 O2 Se compared to pristine WS2 /Bi2 O2 Se. The exciton binding energies for WS2 /Bi2 O2 Se, 0.4at.% V-WS2 /Bi2 O2 Se and 2 at.% V-WS2 /Bi2 O2 Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2 . These findings confirm that by incorporating V-doped WS2 , charge transfer in WS2 /Bi2 O2 Se heterostructures can be tuned, providing a novel light-harvesting technique for the development of the next generation of photovoltaic devices based on V-doped transition metal dichalcogenides (TMDCs)/Bi2 O2 Se.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call