Abstract

Impurity-induced reduction of intergranular cohesion---a major factor limiting the usable strength level of ultrahigh-strength steels---is particularly severe when aggravated by mobile hydrogen through environmental interaction, as in the case of hydrogen stress corrosion cracking. As an aid in establishing an understanding on the electronic level, the influence of hydrogen on the cohesion of an iron grain boundary was determined using the full-potential linearized augmented plane wave (FLAPW) method with the generalized gradient approximation. Through precise calculations on both grain boundary and free surface environments, we found that hydrogen is a strong embrittler. Analysis of the results in terms of structural relaxation, bonding character, and magnetic interactions shows that the hydrogen-iron chemical bond is stronger on the free surface and a charge-transfer mechanism is found to play a dominant role for the hydrogen-induced reduction of cohesion across the iron grain boundary. These results provide a quantitative explanation from first principles for the technologically important phenomenon of hydrogen-induced intergranular embrittlement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.