Abstract
In this paper, a series of silver-deposited TiO2 (Ag−TiO2) nanoparticles (NPs) with a varying content of Ag were prepared by a photoreduction method and were attempted to serve as SERS-active substrates for the first time. SERS signals of 4-MBA molecules adsorbed on Ag−TiO2 NPs were further enhanced considerably relative to those enhancements on pure TiO2 NPs. The surface-deposited Ag on TiO2 can inject additional electrons into molecules adsorbed on the TiO2 surface through the conduction band of TiO2 NPs because of plasmon resonance absorption of Ag under incident visible laser, besides the intrinsic TiO2-to-molecule charge-transfer (CT) contribution. The two contributions mentioned are responsible for the whole SERS intensity of the molecules adsorbed on Ag−TiO2 NPs. This work is valuable in developing nanosized TiO2 used as a promising, nontoxic and biologically compatible SERS-active substrate as well as in studying the CT mechanism between Ag and TiO2 for potential photoelectrochemical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.