Abstract

In this work, the charge transfer fluctuation that was previously used for pp collisions is proposed for relativistic heavy-ion collisions as a quark-gluon plasma (QGP) probe. We propose the appearance of a local minimum at midrapidity for the charge transfer fluctuation as a signal for a QGP. Within a two-component neutral cluster model, we demonstrate that the charge transfer fluctuation can detect the presence of a QGP as well as the size of the QGP in the rapidity space. We also show that the forward-backward correlation of multiplicity can be a similarly good measure of the presence of a QGP. Further, we show that the previously proposed net charge fluctuation is sensitive to the existence of the second phase only if the QGP phase occupies a large portion of the available rapidity space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.