Abstract

Atomically thin graphene has attracted immense attention as a future transparent electrode for flat-panel displays owing to its excellent conductivity, optical transparency, and flexibility. In particular, a graphene doping process is essential for implementing graphene-based high-performance devices, and the development of a transparent cathode with a low work function is required to simplify the integration process of thin-film transistors and organic light-emitting diodes (OLEDs) into active matrix displays. In this study, a transparent n-doped graphene cathode is proposed for implementing inverted OLEDs through two types of cesium (Cs)-based doping techniques: a dipping method using wet chemicals and an evaporation method under a vacuum atmosphere. The changes in the chemical structures and work functions of the n-doped graphene electrodes, as well as their surface morphologies and transmittances, were systematically investigated. The n-type doping mechanism of graphene was investigated, and a close relationship between the electrical charge transfer characteristics of graphene transistors and the formation of C-O-Cs complexes was revealed. Finally, an effective Cs-doped graphene electrode was developed, exhibiting a dramatically decreased work function while maintaining high transmittance; therefore, the Cs-doped graphene cathode was successfully integrated with inverted OLEDs with a bottom-light emission structure that exhibited enhanced external quantum efficiency of graphene cathode-based OLEDs. Thus, our findings provide a better understanding of the doping strategies and potential of n-doped graphene as a transparent cathode for developing high-performance future displays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call