Abstract

Photoexcited structural dynamics in azo-compounds may differ fundamentally whether the push-pull photochromic azo-compound is isolated or forms a heterogeneous charge transfer complex, due to a sudden oxidation of the chromophore. Herein, we use a quantum-classical self-consistent approach that incorporates nonadiabatic excited-state electronic quantum dynamics into molecular mechanics to study the photoexcited dynamics of the push-pull azo-compound para-Methyl Red in the gas phase and sensitizing the (101) anatase surface of TiO2. We find that the photoinduced S2/S0 trans-to- cis isomerization of para-Methyl Red in the gas phase occurs through a pedal-like torsion around the ϕCNNC dihedral angle, without evidence to support the inversion mechanism, likewise in the parent azobenzene molecule. However, the photoexcited structural relaxation of the charge transfer complex para-Methyl Red/TiO2 contrasts essentially with the isolated azo-compounds. Immediately after photoexcitation, the excited electron flows into the TiO2 conduction band, with an injection time constant of ≃5 fs, and no indication of isomerization is observed during the 1.5 ps simulations. Instead, a strong vibronic relaxation occurs that excites the NN stretching mode of the azo-group, which is ultimately ascribed to the NA relaxation, and delocalization, of the hole wavepacket.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.