Abstract

Complex oxides exhibit many intriguing phenomena, including metal-insulator transition, ferroelectricity/multiferroicity, colossal magnetoresistance and high transition temperature superconductivity. Advances in epitaxial thin film growth techniques enable us to combine different complex oxides with atomic precision and form an oxide heterostructure. Recent theoretical and experimental work has shown that charge transfer across oxide interfaces generally occurs and leads to a great diversity of emergent interfacial properties which are not exhibited by bulk constituents. In this report, we review mechanisms and physical consequence of charge transfer across interfaces in oxide heterostructures. Both theoretical proposals and experimental measurements of various oxide heterostructures are discussed and compared. We also review the theoretical methods that are used to calculate charge transfer across oxide interfaces and discuss the success and challenges in theory. Finally, we present a summary and perspectives for future research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.