Abstract

A hole charge created in a molecular system, for instance, by ionization, can migrate through the system solely driven by electron correlation. This charge transfer due to electron correlation is referred to as charge migration. We introduce in this work a new ab initio method analyzing charge migration due to electron correlation in molecules. This method, a third-order "non-Dyson" propagator approach, aims in the long run, in particular, at the calculation of charge migration in relatively large molecules such as oligopeptides. First results of the new non-Dyson method are compared with a previously used propagator approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.