Abstract
Time-dependent density functional theory (TDDFT) in its current adiabatic implementations exhibits three remarkable failures: (a) completely wrong behavior of the excited state surface along a bond-breaking coordinate; (b) lack of doubly excited configurations; (c) much too low charge transfer excitation energies. These TDDFT failure cases are all strikingly exhibited by prototype two-electron systems such as dissociating H2 and HeH+. We find for these systems with time-dependent density matrix functional theory that: (a) Within previously formulated simple adiabatic approximations, the bonding-to-antibonding excited state surface as well as charge transfer excitations are described without problems, but not the double excitations; (b) An adiabatic approximation is formulated in which also the double excitations are fully accounted for.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.