Abstract

Color intensification of anthocyanin solutions in the presence of natural polyphenols (copigmentation) is re-interpreted in terms of charge transfer from the copigment to the anthocyanin. Flavylium cations are shown to be excellent electron acceptors (E(red) approximately -0.3 V vs SCE). It is also demonstrated, for a large series of anthocyanin-copigment pairs, that the standard Gibbs free energy of complex formation decreases linearly with EA(Anthoc) - IP(Cop), the difference between the electron affinity of the anthocyanin, EA(Anthoc), and the ionization potential of the copigment, IP(Cop). Based on this correlation, copigmentation strengths of potential candidates for copigments can be predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.