Abstract

Anisotropic CdS-AgInS2 nanocrystals are directly grown into benzothiadiazole-based semiconducting polymer solution. Their nonlinear optical absorption and nonlinear scattering are investigated with 7-ns laser pulses of 532-nm wavelength for optical limiting applications. Optical limiting is found to be enhanced in the polymer-CdS-AgInS2 nanocomposites, as compared to pure polymer or CdS-AgInS2 nanocrystals. The observation is explained quantitatively using a numerical model which includes one-photon-induced excited state absorption, two-photon absorption, and nonlinear scattering. Presence of charge transfer in polymer-CdS-AgInS2 nanocomposites is found from zero-biased photoconduction experiments, which plays an important role in the enhancement of nonlinear optical properties. In addition, it is also demonstrated that these nanocomposite films can be utilized for photodetection with large and fast photoconductive responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.