Abstract

Inelastic and charge transfer collisions of protons with methane molecules have been investigated in a perpendicular-plane crossed beam experiment via the detection of the scattered protons and H atoms, respectively. Time-of-flight analysis of the protons and H atoms at scattering angles 0°≤θ≤10° and collision energies 10≤E≤30 eV provided information on internal energy distributions of the CH4 and CH+4 products. Excitation of the n(ν1 ,ν3) +m (ν2 ,ν4) type vibrations, with n,m=0, 1, 2,⋅⋅⋅was found to be the most probable assignment of the observed structured energy distributions of CH4 (1 A1 ) at θ≤4°. At θ>4°, the energy transfer increases steeply up to the dissociation limit while the vibrational structure was no longer resolved. In the case of charge transfer, the observed narrow internal energy distributions corresponding to a most probable average internal energy of CH+4 of about 0.95 eV was centered at the recombination energy of the proton indicative of quasiresonant charge transfer. In addition, fragmentation of CH+4 formed in charge transfer collisions of H+ with CH4 was investigated in an independent experiment using mass spectrometric analysis to identify the individual fragment species. The relative intensities of the parent and fragment ions (i.e., of CH+4, CH+3, and CH+2) were found to be in good agreement with the known values of the appearance potentials of the fragment ions and the distribution of the CH+4 internal energy as obtained from the differential cross sections. A mechanism is proposed to explain the experimental results based on vibronic symmetry correlation theory. This mechanism deals with vibronic interactions in the compound quasimolecule CH+5 and explains the origin of the unexpected excitation of infrared inactive modes [e.g., ν2 (E)] of the tetrahedral methane. The effects of Jahn-Teller distortions of the CH+4 charge transfer product are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call