Abstract

The influence of the electrode surface material, the ions chemical structure and the combination of both on differential capacitance curves plays an important role to a deeper understanding on the molecular level structure of electrical double layers (EDLs) involving ionic liquids (ILs).The research work focused on the structure of ionic liquids on charged surfaces is technologically-important for the development of new applications and in the upward of the existing ones, such electrodeposition or energy storage and conversion. Understanding EDL property will allow maximizing the specific capacitance, which in turn leads to higher energy and powering densities of the devices. The electronic interactions of 1-butyl-3-methylimidazolium (tris(pentafluoroethyl)trifluorophosphate) [C4MIM][FAP] ionic liquid with Hg, Au, Pt and GC were assessed in order to get a fundamental understanding of the electrical double layer microscopic structure and its intrinsic properties at electrode/IL interface. Ionic liquids containing the [FAP]− anion exhibit a strong hydrophobic nature and wider electrochemical window than previously used ionic liquids and a good electrochemical stability. The magnitude and shape of C(E) curves revealed different orientations of the cation when the nature of the substrate is changed. The predominantly hydrophobic interactions of the imidazolium hydrocarbon chains with the Hg are traduced by the camel shape type curve. In contrast, the low and nearly constant C(E) values obtained for Au electrode point to the interfacial structure being dominated by the electrostatic π-stacking of the imidazolium ring/electrode interaction with the aromatic ring adopting an orientation more parallel to the surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.