Abstract
AbstractBACKGROUND: Charge storage capability is a fundamental property of polymers used in electromechanical transducer applications. In this work, the charge retention of ternary blends of poly(phenylene ether) and polystyrene modified with poly(styrene‐co‐acrylonitrile), polystyrene‐block‐poly(ethylene‐co‐butylene)‐block‐polystyrene or polystyrene‐block‐polyisobutylene‐block‐polystyrene (SIBS) triblock copolymers was correlated with the blend composition, final morphology and the chemical structure of the components.RESULTS: It was determined that the charge storage capability is favoured by a finely dispersed and non‐interconnected phase and can be reduced by high polarity or low molecular weight of the blend components. Additionally, the molecular weight and the amount of styrene of the copolymers also determined the phase morphology, which in turn affected the charge retention. The use of SIBS for the ternary blends, especially in small quantities, significantly improved the charge storage. As such, 100 µm films with a surface potential of about 400 V were able to retain up to 240 V (60%) after 24 h at 130 °C.CONCLUSION: The electret behaviour of the polymer blends was influenced by a complex relationship between chemical structure, molecular weight and phase morphology. Copyright © 2009 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.