Abstract

The charge storage and membrane applications of graphene oxide (GO) materials are dictated by its intrinsic material properties. Structure-function relationships correlating periodic parameters, such as the hydrated ion radius and ion-GO interactions, are currently lacking yet are needed to provide insight on the charge storage and ion transport mechanism. We report the use of scanning ion conductance microscopy to measure the ion permeability of GO films and evaluate its relationship with the measured capacitance. We demonstrate that species (namely K+) with strong electrostatic interactions with the oxygen functionalities of GO provide the benefit of higher capacitance but suffer from inhibited ion mobility due to constriction of the GO interlayer spacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.