Abstract

Design of electrochemical active boron (B) site at solid materials to understand the relationships between the localized structure, charge state at the B site and electrocatalytic activity plays a crucial role in boosting the green electrochemical synthesis of hydrogen peroxide (H2O2) via two-electron oxygen reduction (2eORR) pathway. Herein, we demonstrate a carbon (C) and nitrogen (N) localized bonding microenvironment to modulate the charge state of B site at the boron-carbon nitride solid (BCNs) to realize the efficient selective electrocatalytic H2O2 production. The localized chemical structure of N-B-N, N-B-C and C-B-C bonds at B site can be regulated through solid-state reaction between boron nitride (BN) and porous carbon (C) at variable temperatures. The optimized BCN-1100 achieves an outstanding H2O2 selectivity of 89% and electron transfer number of 2.2 (at 0.55 V vs. RHE), with the production of 10.55 mmol/L during 2.5 h and the catalytic stability duration for 15000 cycles. Further first-principles calculations identified the dependency of localized bonding microenvironment on the OOH* adsorption energies and relevant charge states at the boron site. The localized structure of B site with BNC2-Gr configuration is predicted to be the highest 2eORR activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call