Abstract

The atomic and electronic structures of a lattice vacancy trapped next to an As impurity (the E-center defect) in crystalline Si are investigated using ab initio pseudopotential total energy calculations. Jahn-Teller distortions and energies, reorientation barriers, defect wave function characters, and hyperfine coupling parameters associated with (-) and (0) charge states of the E center are calculated using a combination of real-space cluster and plane wave supercell methods. For the first time in the theoretical study of this defect, the senses of the Jahn-Teller distortions in the two charge states are found to be opposite, changing from a large pairing type in (0) to a large resonant-bond type distortion in the (-) charge state, in agreement with experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.