Abstract
Understanding the energization processes and constituent composition of the plasma and energetic particles injected into the near‐Earth region from the tail is an important component of understanding magnetospheric dynamics. In this study, we present multiple case studies of the high‐energy (40 keV) suprathermal ion populations during energetic particle enhancement events observed by the Energetic Ion Spectrometer (EIS) on NASA's Magnetospheric Multiscale (MMS) mission in the magnetotail. We present results from correlation analysis of the flux response between different energy channels of different ion species (hydrogen, helium, and oxygen) for multiple cases. We demonstrate that this technique can be used to infer the dominant charge state of the heavy ions, despite the fact that charge is not directly measured by EIS. Using this technique, we find that the energization and dispersion of suprathermal ions during energetic particle enhancements concurrent with (or near) fast plasma flows are ordered by energy per charge state (E/q) throughout the magnetotail regions examined (~7 to 25 Earth radii). The ions with the highest energies (300 keV) are helium and oxygen of solar wind origin, which obtain their greater energization due to their higher charge states. Additionally, the case studies show that during these injections the flux ratio of enhancement is also well ordered by E/q. These results expand on previous results which showed that high‐energy total ion measurements in the magnetosphere are dominated by high‐charge‐state heavy ions and that protons are often not the dominant species above ~300 keV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.