Abstract

We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.