Abstract

The stability of the charge-stacked structure vis-à-vis the charge-alternate structure in the half-doped manganites is studied with a model that includes electronic kinetic energy, onsite and intersite Coulomb interactions, the Jahn–Teller energy, and the antiferromagnetic superexchange between the manganese core spins. It is shown that for a single zigzag chain, the electronic kinetic energy stabilizes the standard chain, with Mn3+ at the bridge site and Mn4+ at the corner site, over the “reversed” zigzag chain with the two Mn valences interchanged. The electronic kinetic energy and magnetic interactions stabilize the three-dimensional charge-stacked structure, while a large intersite Coulomb interaction V⩾Vc would stabilize the charge-alternate structure. It is argued that the magnitude of V is small enough that the charge-stacked structure is stabilized in the half-doped manganites such as La1/2Ca1/2MnO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.