Abstract

The existence and time evolution of charge separation at a plasma edge is studied using a code in which both ions and electrons are described by gyrokinetic equations that include the finite-Larmor-radius correction and the polarization drift. The ion finite-Larmor-radius effect allows the existence of charge separation between ions and electrons, and the polarization drift, which has opposite signs for ions and electrons, has a tendency to accentuate the charge separation in a time-varying electric field. We compare our results with those previously obtained using a code in which the ions were described by using a fluid guiding-centre model, and only the electrons were treated kinetically. In particular, we present results showing excellent agreement between the two codes on the transition of the spectrum of the nonlinear solution from a turbulent spectrum to one dominated by the fundamental mode, where the energy is condensing in the lowest-k modes (inverse cascade).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.