Abstract

Using high sensitivity two sector field mass spectrometric techniques (in particular MIKE scans) we have studied quantitatively (and systematically) the energetics of the superasymmetric spontaneous decay reactions (involving either C2+ or C4+ loss) of triply, quadruply, quintuply, and sextuply charged carbon clusters ions Cnz+ in the size range from n=36 up to n=70. From the kinetic energy release data determined, the apparent intercharge distance has been derived using different models including the simple point charges model, the movable charges model and the charged conducting sphere model. As in earlier but less extensive studies the intercharge distance obtained is for all three models used larger than the cage radius of the respective precursor fullerene ion. It is shown that this and other experimental results are only compatible with the recently suggested auto charge transfer (ACT) reaction as the decay mechanism responsible for the superasymmetric charge separation reactions, whereas two other conceivable decay mechanisms (ball-chain-propagation and decay of charged conducting liquid sphere) are not consistent with all of the experimental fingerprints observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.