Abstract

The weak van der Waals bonding between monolayers in layered materials enables fabrication of heterostructures without the constraints of conventional heteroepitaxy. Although many novel heterostructures have been created by mechanical exfoliation and stacking, the direct growth of 2D chalcogenide heterostructures creates new opportunities for large-scale integration. This paper describes the epitaxial growth of layered, p-type tin sulfide (SnS) on n-type molybdenum disulfide (MoS2) by pulsed metal-organic chemical vapor deposition at 180 °C. The influence of precursor pulse and purge times on film morphology establishes growth conditions that favor layer-by-layer growth of SnS, which is critical for materials with layer-dependent electronic properties. Kelvin probe force microscopy measurements determine a built-in potential as high as 0.95 eV, and under illumination a surface photovoltage is generated, consistent with the expected Type-II band alignment for a multilayer SnS/MoS2 heterostructure. The bottom-up growth of a nonisostructural heterojunction comprising 2D semiconductors expands the combinations of materials available for scalable production of ultrathin devices with field-tunable responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.